I'm aware of only a few people who have published very good reciprocity data. Bond is the only one I've seen do the really heavy lifting, testing carefully at a wide range of times. Others use a long-standing, sometimes modified, Schwarzschild calculation, based on the necessary adjustments in stops between a 1/8th second (0.125 second) exposure and an exposure with a 3.0 log density (10 stops) filter at 125 seconds (sometimes at 128 seconds) to get equal density. You have to be careful here to get a really neutral filter. The B+W 110 and Wratten ND filters are often recommended, with the caveat that the Wratten gel is too leaky in the red for accuracy with some films. Covington and Reeves in their books on astrophotography outline the procedures for this method. The result is a Schwarzschiild exponent 'p', which can be used to calculate corrected exposures with the formula:
corrected time = (( metered time +1)^(1/p))-1
Covington notes that he has seen significant batch-to-batch differences in the same film. If anyone's interested, I can post Covington's and Reeves' films and Schwarzschild exponents. There is some significant variation between their results using exactly the same procedure and films, but a few years apart.
My point is that none of this is pinpoint accurate. Gainer's method, the power and log formulae, and the Schwarzschild formula can all be fit to any experimental data I've come across within about 1/3 stop or better. If anyone assumes that any experimental data they've seen has a margin of error of less than 1/3 stop at these extended times, they're probably fooling themselves. Most of the data floating around the web is not documented at all. Some people have posted fourth order polynomial expressions in an effort to model experimental error and hit each observation exactly.
The difference between the 120 and 165 second example in Gainer's last post for Acros is about 1/3 stop.
So my point is that you can just pick your mathematical poison among several reasonable models for reciprocity failure, and get within a fraction of a stop, assuming the models are built on decent data such as Bond's. I'm not interested in worrying about thirds of stops or less.
I like working with charts in the field, which is why I produced the one I did. It's only as good as the data, none of which I've confirmed by exhaustive work like Bond's, but I've tried to choose the data reasonably carefully.
Lee