steve said:The ONLY problem with stainless is that some alloys require back purging of the weld with argon during welding for the best weldment strength.
steve said:I never said stainless would be a better choice for making a camera - you're projecting whatever you want into my response.
Curt said:I have gas welding equipment and have welded stainless steel with it. You have to be a very good welder to weld stainless and aluminum.
claytume said:Steve
I think that's a common myth amoungst welders, have you ever pressure tested purged and unpurged stainless pipe and compared the two? I've done it and there's no difference, the purge's main use is to keep the inside weld clean which is especially useful where a pig has to be pushed down a line to clean it out.
Clayton
kthalmann said:I'm not projecting anything, just stating my opinion on what material I'd choose if the goal was a lightweight 4x10 camera. The original poster specifically stated: "I'd like it to be metal and designed for light weight." IMHO that rules out stainless steel. If I was to design such a camera, no welding would be required. So, the relative ease of welding of stainless vs. aluminum would be irrelevant.
I'm not attacking your post, or even responding directly to it. I was just sharing my opinion based on the original poster's requirements (which happen to be very similar to my own).
Kerry
Donald Miller said:You need to explain this further. Stainless is MORE dimenionally stable than aluminum - look up the coeffecient of expansion for the metals.If I were looking to build a lightweight metal camera I would not choose stainless because it is not dimensionally stable...at least in the thicknesses that would allow it to be light weight.
It's nearly the same weight as carbon steel, so "heavy" is relative, especially when used in thin sections.Stainless is a heavy metal. I know because I have worked with it for over thirty years.
You need to check on the mass of metals before you make statements like this. Titanium is 60% the weight of steel for the same cubic volume. Aluminum is 40% the weight of steel for the same volume - making aluminum 20% lighter than titanium.I would opt for titanium. It is lighter and stronger than aluminum and stainless. It would require machining too. One of the small "all in one machines" would probably do what is needed to build a camera.
The reason a final structure in titanium can be lighter than aluminum is the strength of titanium is about 6x aluminum. Meaning that depending upon the structure, a titanium piece could be up to 6x lighter than the same piece made from aluminum because of titanium's greater strength which results in thinner sections and reduced volume.
Also, titanium is a PITA to work. It chews tools up in a hurry, doesn't hold first pass dimensions readily so it requires a lot of finishing passes. I have a 6-inch square, 10-inch tall block of titanium in my workshop. You can attempt to polish it with carborundum, Al/Ox, ceramic, etc. - it either gums up the polishing wheels or just destroys them in a spectacular shower of sparks.
Titanium is extrememly expensive to purchase and expensive to work to a final finished piece. Magnesium alloy is a far, far better choice for any type of camera body. Way lighter weight then either titanium or aluminum and far easier to work than titanium.
Then you have no knowledge of computer numerical controlled wood working equipment - it's the same accuracy as CNC metal working equipment. Wood can be worked on metal working machinery with slightly different tooling.In fact this would also be what I would use to build film holders since the ability to hold tolerances is greatly enhanced over conventional wood working equipment. If the machine can machine metal, it sure can machine wood.
Not quite. Aluminum is welded with "AC" (not real AC current) but with DC current and the electrode alternating between electrode positive and electrode negative. The DCEP portion of the wave providing cleaning of the oxides on the aluminum surface, and the DCEN portion providing the welding.Welding aluminum is usually done with TIG or MIG reverse polarity DC with high frequency generator.
The high frequency does two things. First, it starts the arc without touching the electrode to the metal surface so you don't contaminate the electrode; secondly, a frequency imposed on the arc focuses the arc (makes it narrower) which can be useful for greater penetration. In most cases, the frequency is set between 120 Hz and 150 Hz. The Miller machines go up to 250 Hz which is almost useless - but it looks good. Kind of like a guitar amplifier volume control that goes to "11."
No. Argon can be used for welding any thickness of metal as can helium. Helium holds more heat that argon, so it can provide greater penetration, but with a narrower weld bead. It may be useful on thicker metal if the welder's maximum amperage cannot be matched to the thickness of metal. Believe me, a 600 amp TIG can weld almost any metal in a single pass with argon.The weld is flooded with argon for lighter material and flooded with Helium for heavier material.
Actually - it's far easier to weld thin metal with a MIG. That's why they're so popular for sheet metal repair. MIG welding thin stainless is a breeze. The problem with TIG on thin metal is the extreme heat from the arc warps the metal. A factor contributing to this is that you have to dwell longer on one area with the torch in order to melt the metal making a larger heat affected area. If you turn up the amperage to increase your travel rate and decrease the amount of dwell time on any one area - you risk blowing through the metal when the arc starts.Welding stainless (especially light guage--22-18 ga) is best done with TIG equipment ...DC straight polarity and high frequency generator. The weld is flooded with Argon to keep the weld from having inclusion of oxygen which will tend to cause the weld to become brittle and subject to failure
Granted, TIG is the ultimate in welding controllability. You could literally weld a razor blade to an anvil.
If you setup a MIG correctly, you have the minimum amount of heat affected area.
Both MIG and TIG use DCEN (electrode negative) to weld stainless steel. There is no need for high frequency to weld stainless with a TIG after the arc is started. TIG welders with HF start will stop the HF after the arc is struck and stabilized when the machine is set to DC and the electrode is negative.
For reference, I've welded stainless using a lift TIG machine with NO HF at all. It works fine, you just have to get used to the coordination required to start the arc by lightly touching the metal surface with the electrode when you activate the arc. To learn the technique, many people start with a copper plate next to the area to be welded, start the arc on the copper plate and transfer the arc to the weld area because the tungsten electrode won't stick to the copper plate.
Absolutely. I was actually thinking of trying to make a really light camera using just standard sheet metal techniques - a punch press and a break. I think it's possible. It would be an ugly beast, but very light and not so expensive maybe. And for this, aluminum is probably not such a good choice because it wants larger bending radii than, say, stainless.steve said:When you stop thinking of the "right" materials and a certain way to do something (like every other design you've seen) you may end up with a new solution for the design requirements.
Go read the post I made on 8-Aug-2006 at 1:54pm. I need movements that Fotoman doesn't have.trebor569 said:Hi Bruce, with all this talk of welding, and subjects metallurgical did you ever get your original question answered? If you havn't given up looking for a 4x10 camera have a look at fotoman on...
We use cookies and similar technologies for the following purposes:
Do you accept cookies and these technologies?
We use cookies and similar technologies for the following purposes:
Do you accept cookies and these technologies?